El dinero proporciona algo de felicidad. Pero a partir de cierto momento el dinero sólo proporciona más dinero


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El dinero proporciona algo de felicidad. Pero a partir de cierto momento el dinero sólo proporciona más dinero"

Transcripción

1 Anualidades Vencidas, Anticipadas y Diferidas. El dinero proporciona algo de felicidad. Pero a partir de cierto momento el dinero sólo proporciona más dinero Neil Simon. Objetivo de la sesión: Conocer el concepto de anualidad. Identificar, definir y explicar los diferentes tipos de anualidades. Identificar situaciones en las que se apliquen las anualidades. Plantear y resolver problemas de anualidades vencidas, anticipadas diferidas. Introducción. Anualidad se define como una serie de pagos por lo general iguales realizados en intervalos de tiempo iguales. La palabra anualidad parece implicar que los pagos se efectúan cada año, pero esto no es así, ya que pueden ser mensuales, quincenales, semanales, etcétera. Un ejemplo de anualidades sería: El cobro quincenal del sueldo. El pago mensual de un crédito hipotecario. Los abonos mensuales para pagar una computadora.

2 El pago anual de un seguro de vida. Los dividendos semestrales pagados a los accionistas. Los depósitos bimestrales del fondo de retiro. El concepto de anualidad es de gran importancia en matemáticas financieras ya que es muy frecuente que las transacciones comerciales impliquen una serie de pagos hechos en intervalos de tiempo iguales, en lugar de un pago único al final del plazo. Los términos de renta, pago periódico, abono, entre otros nombres, son utilizados en lugar de la palabra anualidad. El tiempo que transcurre entre dos pagos sucesivos se le llama periodo de pago o período de renta. El periodo de pago puede ser anual, semestral o mensual entre otros períodos. El tiempo que transcurre entre el inicio del primer período de pago y del último pago, se le llama plazo de la anualidad. Una persona compra un televisor en 13 mensualidades de $485 cada una. Identifique lo que es anualidad, periodo de pago, y el plazo de la anualidad. La anualidad (pago periódico o abono) es de $485. El período de pago es de un mes. El caso de la anualidad de 13 meses. Existen cuatro formas de clasificar las anualidades: 1. Utilizando el tiempo, existen cuatro formas:

3 Ciertas Una anualidad cierta es aquella en la cual los pagos comienzan y terminan en fechas perfectamente determinadas. Por ejemplo, al comprar un aparato eléctrico en una tienda detallista, se establecen de antemano las fechas de inicio y terminación del crédito Contingentes una anualidad contingente es aquella en la cual la fecha del primer pago, la fecha del último pago o ambas, dependen de algún suceso que se conoce va a ocurrir. Por ejemplo, un contrato de seguro de vida dice que la suma asegurada se entregue el beneficiario del seguro en 12 pagos mensuales iguales. Se sabe que los pagos se harán al morir el asegurado, pero no se sabe cuándo va a morir. Por eso se le llama contingente. 2. utilizando los pagos o abonos como criterio de clasificación, las anualidades pueden ser: Vencidas Una anualidad vencida, se le conoce también como anualidad ordinaria, y es aquella cuyos pagos se efectúan al final de cada periodo. Anticipadas La anualidad anticipada, es aquella cuyos pagos se hacen el principio de cada periodo. 3. Utilizando los intereses como criterio de clasificación, las anualidades pueden ser: Simples Generales

4 La anualidad simple es aquella cuyo periodo de pago coincide con el periodo de capitalización de intereses. Por ejemplo, realizar depósitos mensuales en una caja de ahorros que paga intereses capitalizables cada mes. Una anualidad general es aquella cuyo periodo de pago no coincide con el periodo de capitalización de los intereses. Por ejemplo, cuando se realizan depósitos quincenales en una cuenta de ahorros cuyos intereses se capitalizan cada mes. 4. Por último, si se utiliza el momento de inicio de la anualidad como criterio de clasificación, las anualidades deben ser: Inmediatas La anualidad inmediata, es aquella en la que no existe aplazamiento alguno de los pagos, es decir, los pagos siempre se hacen desde el primer período de pago. Diferidas Una anualidad diferida es aquella en la cual los pagos se difieren un cierto número de períodos. Por ejemplo, en la compra a crédito de una impresora, la cual se pagará en 12 abonos mensuales y el primer pago se llevará cabo tres meses después de la compra.

5 Si se hace una combinación de cada uno de los criterios de clasificación, es posible formar 16 tipos de anualidades: Anualidades ciertas, simples, vencidas e inmediatas. Anualidades contingentes, generales, vencidas y diferidas. Anualidades ciertas, simples, anticipadas y diferidas, etcétera. Las 16 combinaciones anualidades, las más comunes son: Anualidades ciertas, simples, vencidas e inmediatas. Anualidades ciertas, simples, anticipadas e inmediatas, conocidas como anualidades anticipadas. Anualidades ciertas, simples, vencidas y diferidas, conocidas como anualidades diferidas. 1. Qué es una anualidad? 2. Cuáles son los cuatro criterios de clasificación de las anualidades? 3. Cuáles son los tres tipos más comunes de anualidades? 4. Una persona compra una bicicleta a 18 pagos quincenales de $172. Identifique la anualidad, el periodo de pago y el plazo de la anualidad. 5. Proporciona un ejemplo de una anualidad:

6 a. Vencida. b. Anticipada. c. Vencida, diferida. d. Anticipada, diferida. ANUALIDADES VENCIDAS Los 16 tipos de anualidades existentes, las anualidades ciertas, simples, vencidas e inmediatas, son las más utilizadas en el mundo financiero. A este tipo de anualidades vulgarmente se les conoce como anualidades vencidas u ordinarias. El monto de una anualidad vencida, es el valor acumulado una serie de pagos iguales hechos al final de cada período de pago. Por ejemplo, suponga que se depositan $5000 al final de cada mes en una institución financiera que paga una tasa de interés del 1.5% mensual capitalizable cada mes. Cuál será el monto al cabo de 6 meses Fmeses Donde F es el monto de la anualidad. Observe que el 0 en el diagrama de tiempo corresponde al momento actual o presente y coincide con el inicio del mes 1 y a su vez coincide con el inicio del mes 2 y así sucesivamente. El diagrama de tiempo anterior también se le conoce como diagrama de flujo de efectivo, o sea las entradas y

7 salidas de dinero. En este ejemplo se tiene como flujo de efectivo $5,000 mensuales durante seis meses. Debido a que los depósitos se llevan a cabo al final de cada mes, los primeros $5,000 ganarán intereses por cinco meses, nunca por seis. Los segundos $5,000 ganarán intereses por cuatro meses. El último depósito hecho al final del mes seis no gana intereses. El monto de la anualidad es la suma de todos los depósitos mensuales y su correspondiente interés compuesto, acumulado hasta el término del plazo. Si la fecha focal se localiza al final del sexto mes, el monto de la anualidad se calcula como sigue: 5,000 x [ (1.015)^5 + (1.015)^4 + (1.015)^3 + (1.015)^2 + (1.015) + 1] = ,000 x = 31, Menos: Flujo de Efectivo 31, (5,000 x 6) 31, , , F = Monto de la Anualidad = 31, Interés = 30, Anualidad (-) Interés = 1, Cuando el número de pagos o depósitos muy grande, el método anterior resulta muy laborioso.

8 Entonces hay que deducir una fórmula general para obtener el monto o valor futuro una anualidad cierta, simple, vencida e inmediata. Considere usted una anualidad vencida en donde A es el pago o depósito hecho al final de cada uno de n periodos. i es la tasa de interés por el periodo, expresada en forma decimal, y F es el monto de la anualidad. A A A A A A A (n-3) (n-2) (n-1) n meses F Debido a que el primer pago se realiza al final del primer periodo, ganarán intereses (n-1) períodos. El segundo pago ganará intereses por (n-2) períodos, etcétera. El pago final no genera intereses. Si la fecha focal se localiza al final del periodo n1, entonces el monto o valor futuro de la anualidad está dado por: F=A(1+i)^n-1+ A(1+i)^n-2+ A(1+i)^n-3+ +A(1+i)^3+ A(1+i)^2+ A(1+i)+A Factorizando el lado derecho de la ecuación anterior: F=A[(1+i)^n-1+ A(1+i)^n-2+ A(1+i)^n-3+ +(1+i)^3+(1+i)^2+(1+i)+1] O bien: F= A[1+ (1+i)+ (1+i)^2+(1+i)^3+ +(1+i)^n-3+(1+i)^n-2+(1+i)^n-1] Los términos de la expresión entre corchetes forman la sucesión geométrica, donde: a1 = 1 r = (1 + i)

9 La fórmula general para obtener el monto o valor futuro de una anualidad vencida es: [(1 + i) ^n)] - 1 F= A i Caso práctico: A= 5000 mensuales i= por cada mes n= 6 meses F=5,000[( )^ (( )^6) - 1 F= 5, F= 5, F= 5,

10 F= 5,000 x F= 31, (( )^6) - 1 F= 5, Un padre empieza a ahorrar para la su hijo pueda estudiar cuando crezca, una carrera universitaria. Planea depositar 3,000 en una cuenta de ahorros al final de cada mes durante los próximos 8 años. Con una tasa de interés anual de 8.4% Cuál será el monto al cabo de 8 años? Cuánto serán los intereses? Solución: a- Se sobreentiende que la capitalización e mensual.

11 A= 3000 i= interés mensual (se divide entre 12) n= 8 años 96 meses (se multiplica 8 x 12) (( )^96) - 1 F= 3, F= F= F= 408, total con intereses Ahorro 3000x96 meses 288, i= ,000 i= 120, Suponga usted que el depósito de 3000 mensuales se hace solo por cinco años, el resto del tiempo se depositan $3500 mensuales para compensar la inflación. Calcule el monto final y por otra parte el interés ganado.

12 F= 3000 n= 5x12 60 F= 3000 ((1+.007)^60) F= 3000 x F= 222, Para obtener el monto final F, con fecha final del mes 96 F= 222, x (1+007)^36 + 3,500 ( )^ F= 429, En 8 años depositó 306,000 (3,000x60)+(3,500x36) = 306,000 Entonces el interés ganado fue de 429, , 000 = 123, Se hace una ecuación de valor F=3,000 (1.007)^60 1 x (1.007)^36+3, ^ F= 286, , F= 429, Hasta aquí se ha determinado el valor futuro de una anualidad vencida.

13

DIPLOMADO EN FINANZAS CORPORATIVAS MATEMÁTICAS FINANCIERAS Y PORTAFOLIOS

DIPLOMADO EN FINANZAS CORPORATIVAS MATEMÁTICAS FINANCIERAS Y PORTAFOLIOS DIPLOMADO EN FINANZAS CORPORATIVAS MATEMÁTICAS FINANCIERAS Y PORTAFOLIOS Por: Gelacio Martín Sánchez OCTUBRE 27, 2012 2. ANUALIDADES CONTENIDO 2.1 DEFINICIÓN DE ANUALIDADES 2.2 ANUALIDADES VENCIDAS 2.3

Más detalles

Matemáticas financieras

Matemáticas financieras Matemáticas financieras MATEMÁTICAS FINANCIERAS 1 Sesión No. 5 Nombre: Anualidades simples, ciertas, vencidas e inmediatas Contextualización En esta sesión veremos las anualidades su estudio es de mucha

Más detalles

MATEMATICAS APLICADAS CLASE 6

MATEMATICAS APLICADAS CLASE 6 MATEMATICAS APLICADAS CLASE 6 COMENTARIOS DE AMENAZA DE GUERRA EUA NORCOREA IMPACTOS FINANCIEROS ANUALIDADES VENCIDAS VALOR PRESENTE Ejemplo: Una empresa desea construir una fábrica, por lo cual adquiere

Más detalles

Curso MATEMÁTICAS FINANCIERAS Capitulo 5. Carlos Mario Morales C 2009

Curso MATEMÁTICAS FINANCIERAS Capitulo 5. Carlos Mario Morales C 2009 Curso MATEMÁTICAS FINANCIERAS Capitulo 5 Contenido Capitulo 5 Anualidades ordinarias y anticipadas Anualidad Valor final de una anualidad Valor presente de una anualidad Anualidades anticipadas Amortización;

Más detalles

ANUALIDADES VENCIDAS

ANUALIDADES VENCIDAS SESION 10 5.3. Anualidades 5.4. Amortización ANUALIDADES VENCIDAS Al comprar ciertos artículos no siempres se pueden pagar de contado, por lo que es muy común rel uso de créditos, ya sea mediante bancos

Más detalles

EJERCICIOS INTERES COMPUESTO

EJERCICIOS INTERES COMPUESTO EJERCICIOS INTERES COMPUESTO Nº1.- Una persona pide prestada la cantidad de $800. Cinco años después devuelve $1.020. Determine la tasa de interés nominal anual que se le aplicó, si el interés es: a) Simple

Más detalles

MATEMATICAS APLICADAS CLASE 4

MATEMATICAS APLICADAS CLASE 4 MATEMATICAS APLICADAS CLASE 4 DISCUSIÓN DEL CASO PREGUNTA Si fueras un alto ejecutivo de una empresa en la cual existen evidencias que la relacionan a otra compañía o persona para que esta última obtenga

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemáticas Financieras Notas de Clase -2011 Carlos Mario Morales C 2 Unidad de Aprendizaje Interés Compuesto Contenido Introducción 1. Concepto de interés compuesto 2. Modelo de Interés compuesto 3. Tasa

Más detalles

Sea A el pago anual uniforme; P = $ 100,000 o el valor presente que tiene la casa n = 10 pagos; i = 10%.

Sea A el pago anual uniforme; P = $ 100,000 o el valor presente que tiene la casa n = 10 pagos; i = 10%. UNIVERSIDAD NACIONAL DE INGENIERÍA. UNI NORTE. Sede Estelí. Líder en Ciencia y Tecnología Asignatura : Ingeniería económica. Carrera : Ingeniería agroindustrial. Año Académico : IV Año. Unidad No. III

Más detalles

Glosario de términos. Introducción a las Matemáticas Financieras

Glosario de términos. Introducción a las Matemáticas Financieras Introducción a las Matemáticas Financieras Carlos Mario Morales C 2012 1 Anualidades y gradientes UNIDAD 3: ANUALIDADES Y GRADIENTES OBJETIVO Al finalizar la unidad los estudiantes estarán en capacidad

Más detalles

TEMA N 1. INTERES SIMPLE Y COMPUESTO. Conceptos Básicos: Antes de iniciar el tema es necesario conocer los siguientes términos:

TEMA N 1. INTERES SIMPLE Y COMPUESTO. Conceptos Básicos: Antes de iniciar el tema es necesario conocer los siguientes términos: TEMA N 1. INTERES SIMPLE Y COMPUESTO Conceptos Básicos: Antes de iniciar el tema es necesario conocer los siguientes términos: Capitalización: Es aquella entidad financiera mediante la cual los intereses

Más detalles

UNIVERSIDAD POLITÉCNICA SALESIANA CARRERA DE INGENIERÍA EN GERENCIA Y LIDERAZGO PRUEBA 1 DE MATEMÁTICA FINANCIERA PRIMER INTERCICLO PERIODO 46

UNIVERSIDAD POLITÉCNICA SALESIANA CARRERA DE INGENIERÍA EN GERENCIA Y LIDERAZGO PRUEBA 1 DE MATEMÁTICA FINANCIERA PRIMER INTERCICLO PERIODO 46 UNIVERSIDAD POLITÉCNICA SALESIANA CARRERA DE INGENIERÍA EN GERENCIA Y LIDERAZGO PRUEBA 1 DE MATEMÁTICA FINANCIERA PRIMER INTERCICLO PERIODO 46 NOMBRE:... FECHA: NIVEL:... PROF. René Quezada C. INSTRUCCIONES

Más detalles

Colegio Franciscano del Virrey Solís Bogotá D.C. Educar para la Justicia, la Paz y las Nuevas Relaciones

Colegio Franciscano del Virrey Solís Bogotá D.C. Educar para la Justicia, la Paz y las Nuevas Relaciones PORCENTAJE El concepto de porcentaje se aplica en diversas situaciones de economía, estadística, medicina entre otros, el porcentaje o el tanto por ciento es la razón que indica la cantidad que se toma

Más detalles

MATEMATICA COMERCIAL

MATEMATICA COMERCIAL Profesor: Ezequiel Roque David Ramírez MATEMATICA COMERCIAL Descripción y objetivos del curso Este tema está dedicado al estudio de conceptos que, con formulación matemática y carácter marcadamente económico,

Más detalles

Tarea Final. Valor del dinero a través del tiempo Ejercicios

Tarea Final. Valor del dinero a través del tiempo Ejercicios Materia: Economía División Ingeniería Maestro: Lic. César Octavio Contreras Tovías Tarea Final Valor del dinero a través del tiempo Ejercicios 1. El señor Martínez pide prestado al Banco la cantidad de

Más detalles

MATEMATICAS FINANCIERAS CAPITULO 4 ANUALIDADES EJERCICIOS RESUELTOS

MATEMATICAS FINANCIERAS CAPITULO 4 ANUALIDADES EJERCICIOS RESUELTOS 1. Cuando su hijo cumple 12 años, un padre hace un deposito de $X en una fiduciaria con el objeto de asegurar sus estudios universitarios, los cuales iniciará cuando cumpla 20 años. Suponiendo que para

Más detalles

El interés y el dinero

El interés y el dinero El interés y el dinero El concepto de interés tiene que ver con el precio del dinero. Si alguien pide un préstamo debe pagar un cierto interés por ese dinero. Y si alguien deposita dinero en un banco,

Más detalles

Problemas propuestos Capítulo No. 4 Tasas de interés y amortización de deudas

Problemas propuestos Capítulo No. 4 Tasas de interés y amortización de deudas Problemas propuestos Capítulo No. 4 Tasas de interés y amortización de deudas Tasas de interés efectivas o reales 1. Si una persona deposita la suma de $us. 500 al 8% mensual compuesto trimestralmente,

Más detalles

El interés simple es el que se calcula sobre el capital inicial, el cual permanecerá invariable durante todo el tiempo que dure la inversión:

El interés simple es el que se calcula sobre el capital inicial, el cual permanecerá invariable durante todo el tiempo que dure la inversión: El interés es la cantidad que se paga o se cobra (según sea el caso) por el uso del dinero; cuando se calcula el interés se deben considerar tres factores: Capital, tasa de interés y tiempo. El capital

Más detalles

LECCIÓN Nº 05 y 06 COMPÀRACION DE TASAS: EL EFECTO DE LOS PERIODO DE COMPOSICION.

LECCIÓN Nº 05 y 06 COMPÀRACION DE TASAS: EL EFECTO DE LOS PERIODO DE COMPOSICION. LECCIÓN Nº 05 y 06 COMPÀRACION DE TASAS: EL EFECTO DE LOS PERIODO DE COMPOSICION. OBJETIVO: Definir el periodo de capitalización, la tasa de interés nominal, tasa de interés efectiva y el periodo de pago.

Más detalles

4. Matemática financiera.

4. Matemática financiera. 4. Matemática financiera. Autora: Maite Seco Benedicto MATEMÁTICAS FINANCIERAS BÁSICAS Las Matemáticas financieras son una herramienta imprescindible para poder valorar las operaciones financieras, tanto

Más detalles

... 8. INTERES SIMPLE

... 8. INTERES SIMPLE 1 8. INTERES SIMPLE 8.1 Conceptos Básicos Interés El interés es el rédito o excedente generado, por una colocación de dinero, a una tasa de interés y un determinado periodo de tiempo y este puede ser simple

Más detalles

UNIDADES TECNOLÓGICAS DE SANTANDER GUÍA DE ESTUDIO No. 1

UNIDADES TECNOLÓGICAS DE SANTANDER GUÍA DE ESTUDIO No. 1 IDENTIFICACIÓN UNIDAD ACADÉMICA TECNOLOGIA EN CONTABILIDAD FINANCIERA ASIGNATURA: ELECTIVA DE PROFUNDIZACION-TALLER FINANCIERO UNIDAD TEMÁTICA COSTO DEL DINERO COMPETENCIA El estudiante: RESULTADOS DE

Más detalles

( )( ) UNIDAD III. INTERÉS COMPUESTO 3.1. Introducción y conceptos básicos. Periodo de capitalización

( )( ) UNIDAD III. INTERÉS COMPUESTO 3.1. Introducción y conceptos básicos. Periodo de capitalización UNIDAD III. INTERÉS COMPUESTO 3.1. Introducción y conceptos básicos Si un capital C al terminar un periodo de inversión (por ejemplo un año) genera un monto M; no se retira entonces al segundo periodo

Más detalles

MATEMATICAS FINANCIERAS LECCION 1

MATEMATICAS FINANCIERAS LECCION 1 MATEMATICAS FINANCIERAS LECCION 1 1. EL INTERES El diccionario de la Real Academia Española, define el interés como lucro producido por el capital. Algunos autores lo definen de diversas maneras como:

Más detalles

1 Unidad de Aprendizaje Interés Simple

1 Unidad de Aprendizaje Interés Simple 1 Unidad de Aprendizaje Interés Simple Contenido Introducción 1. Concepto del interés simple 2. Formula de interés simple 3. Clases de interés simple 4. Capital Final Valor futuro 5. Capital inicial Valor

Más detalles

Lista de problemas de Matemática Financiera (Temas 1 y 2) Leyes de interés y descuento

Lista de problemas de Matemática Financiera (Temas 1 y 2) Leyes de interés y descuento MÉTODOS MATEMÁTICOS DE LA ECONOMÍA (2008 2009) LICENCIATURAS EN ECONOMÍA Y ADE - DERECHO Lista de problemas de Matemática Financiera (Temas 1 y 2) Leyes de interés y descuento 1. Se considera la ley de

Más detalles

GUIA DE TRABAJO Materia: Matemáticas Guía #2. Tema: Regla de interés simple. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno:

GUIA DE TRABAJO Materia: Matemáticas Guía #2. Tema: Regla de interés simple. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: GUA DE TRABAJO Materia: Matemáticas Guía #2. Tema: Regla de interés Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDCONES: Trabajo individual. Sin libros, ni cuadernos, ni notas.

Más detalles

UNIDAD IV. ANUALIDADES 4.1. Definición y clasificación de las anualidades. Criterio Tipo Descripción Tiempo (fecha de inicio y fin) Ciertas

UNIDAD IV. ANUALIDADES 4.1. Definición y clasificación de las anualidades. Criterio Tipo Descripción Tiempo (fecha de inicio y fin) Ciertas UNIDAD IV. ANUALIDADES 4.1. Definición y clasificación de las anualidades Anualidad: conjunto de pagos iguales realizados a intervalos iguales de tiempo. No necesariamente se refiere a periodos anuales,

Más detalles

Análisis y evaluación de proyectos

Análisis y evaluación de proyectos Análisis y evaluación de proyectos UNIDAD 5.- MÉTODOS DE EVALUACIÓN DEL PROYECTO José Luis Esparza A. Métodos de Evaluación MÉTODOS DE EVALUACIÓN QUE TOMAN EN CUENTA EL VALOR DEL DINERO A TRAVÉS DEL TIEMPO.

Más detalles

DIPLOMADO EN FINANZAS CORPORATIVAS MÓDULO II MATEMÁTICAS FINANCIERAS Y PORTAFOLIOS

DIPLOMADO EN FINANZAS CORPORATIVAS MÓDULO II MATEMÁTICAS FINANCIERAS Y PORTAFOLIOS DIPLOMADO EN FINANZAS CORPORATIVAS MÓDULO II MATEMÁTICAS FINANCIERAS Y PORTAFOLIOS Por: Gelacio Martín Sánchez OCTUBRE 22, 2011 1. VALOR DEL DINERO EN EL TIEMPO CONTENIDO 1.1 DEFINICIÓN DE MATEMÁTICAS

Más detalles

Descuento MATEMÁTICA FINANCIERA. Descuento. Descuento

Descuento MATEMÁTICA FINANCIERA. Descuento. Descuento Descuento MATEMÁTICA FIACIERA DESCUETO SIMPLE Luis Alcalá USL Segundo Cuatrimeste 2016 En las operaciones comerciales, en general no se utiliza actualización para calcular el valor actual de un capital

Más detalles

( ) -n i. Entonces el valor presente de los pagos mensuales vencidos se calculan con la ecuación: UNIDAD IV. ANUALIDADES Anualidades diferidas

( ) -n i. Entonces el valor presente de los pagos mensuales vencidos se calculan con la ecuación: UNIDAD IV. ANUALIDADES Anualidades diferidas 4.5. Anualidades diferidas UNIDAD IV. ANUALIDADES Las anualidades diferidas son aquellas en los que el inicio de los pagos periódicos se pospone para un tiempo posterior a la formalización de la operación.

Más detalles

PROGRAMA DE MATEMÁTICA FINANCIERA CARRERA: ADMINISTRACIÓN UNIDADES CREDITOS: 05

PROGRAMA DE MATEMÁTICA FINANCIERA CARRERA: ADMINISTRACIÓN UNIDADES CREDITOS: 05 UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS CÁTEDRA DE: PRODUCCIÓN Y ANÁLISIS DE LA INVERSIÓN MÉRIDA - VENEZUELA PROGRAMA DE MATEMÁTICA

Más detalles

CONCEPTO Y CLASIFICACIÓN DE

CONCEPTO Y CLASIFICACIÓN DE CONCEPTO Y CLASIFICACIÓN DE LAS RENTAS CONCEPTO Y CLASIFICACIÓN DE LAS RENTAS En matemáticas financieras se entiende por renta una sucesión de capitales disponibles, respectivamente en vencimientos i determinados.

Más detalles

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves INTERES SIMPLE OBJETIVOS: Al finalizar el estudio del presente capítulo, el estudiante será capaz de: 1. Explicar los conceptos de interés simple, monto o valor futuro, valor presente o valor actual, tiempo.

Más detalles

TEMA 2: EL INTERÉS SIMPLE

TEMA 2: EL INTERÉS SIMPLE TEMA 2: EL INTERÉS SIMPLE 1.- CAPITALIZACIÓN SIMPLE 1.1.- CÁLCULO DEL INTERÉS: Recibe el nombre de capitalización simple la ley financiera según la cual los intereses de cada periodo de capitalización

Más detalles

Hoja 5: Sucesiones y aritmética mercantil

Hoja 5: Sucesiones y aritmética mercantil Hoja 5: Sucesiones y aritmética mercantil 1 Hoja 5: Sucesiones y aritmética mercantil 1 May 2000 En una sucesión aritmética, el primer término es 5 y el cuarto término es 40. Halle el segundo término.

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: CONTADURÍA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: CONTADURÍA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: CONTADURÍA PROGRAMA DE LA ASIGNATURA DE: MATEMÁTICAS FINANCIERAS IDENTIFICACIÓN DE LA ASIGNATURA MODALIDAD:

Más detalles

LECCIÓN Nº 05 y 06 INTERES COMPUESTO

LECCIÓN Nº 05 y 06 INTERES COMPUESTO LECCIÓN Nº 05 y 06 INTERES COMPUESTO OBJETIVO: El objetivo de este capitulo es enseñar el manejo de los factores que intervienen en las operaciones de interés compuesto junto con los análisis matemáticos.

Más detalles

a) El interés se paga una sola vez a fin de año. = (1+ ) =$10000(1+0.24) = $12400

a) El interés se paga una sola vez a fin de año. = (1+ ) =$10000(1+0.24) = $12400 Interés nominal e interés efectivo En los negocios se habla de declaraciones anuales, utilidad anual, etc., y aunque las declaraciones financieras pueden calcularse en tiempos menores de un año, la referencia

Más detalles

Matemáticas financieras

Matemáticas financieras Matemáticas financieras ASIGNATURA 1 Sesión No. 8 Nombre: Amortización y fondos de amortización Contextualización En esta sesión continuaremos con el tema de las amortizaciones, el importe adeudado o saldo

Más detalles

Anualidades y Perpetuidades: Casos Especiales. 1

Anualidades y Perpetuidades: Casos Especiales. 1 Anualidades y Perpetuidades: Casos Especiales. El objetivo de esta nota es mostrar las posibles variantes que se presentan en cuanto a la valuación de anualidades y perpetuidades, reduciendo lo más que

Más detalles

ITSS. Matemáticas financieras Unidad 3 Anualidades Material para la evaluación. Versión Completa 2.0. M.F. Jorge Velasco Castellanos

ITSS. Matemáticas financieras Unidad 3 Anualidades Material para la evaluación. Versión Completa 2.0. M.F. Jorge Velasco Castellanos ITSS Matemáticas financieras Unidad 3 Anualidades Material para la evaluación Versión Completa 2.0 Anualidades 1 qué cantidad se acumularía en un semestre si se depositaran $100,000.00 al finalizar cada

Más detalles

FUNDAMENTOS DE MATEMÁTICA FINANCIERA

FUNDAMENTOS DE MATEMÁTICA FINANCIERA UNDAMENTOS DE MATEMÁTICA INANCIERA Curso Preparación y Evaluación Social de Proyectos Sistema Nacional de Inversiones División de Evaluación Social de Inversiones MINISTERIO DE DESARROLLO SOCIAL Curso

Más detalles

5.3. Interés simple. El interés

5.3. Interés simple. El interés UNIDAD 5 5.3. Interés simple En la actualidad el uso del dinero tiene diferentes vertientes, ya sea para gastar en bienes y servicios o para invertir en un negocio, en una propiedad, etc., sin embargo,

Más detalles

SEMINARIO TALLER FUNDAMENTOS DE MATEMÁTICAS FINANCIERAS. DIRIGIDO POR Edgardo Tinoco Pacheco

SEMINARIO TALLER FUNDAMENTOS DE MATEMÁTICAS FINANCIERAS. DIRIGIDO POR Edgardo Tinoco Pacheco SEMINARIO TALLER FUNDAMENTOS DE MATEMÁTICAS FINANCIERAS DIRIGIDO POR Edgardo Tinoco Pacheco CONCEPTOS BASICOS DE MATEMÁTICAS FINANCIERAS 1. Fundamentos 2. Interés simple 3. Interés compuesto 4. Tasas de

Más detalles

CAPITALIZACIÓN SIMPLE

CAPITALIZACIÓN SIMPLE CAPITALIZACIÓN SIMPLE 1. Calculénse el interés y el capital final resultantes de invertir 10.000 euros durante tres años a un tipo de interés anual del 5% en capitalización simple. Interés: I = C i n Capital

Más detalles

TABLA DE CONTENIDO TABLA DE CONTENIDO... 1 CAPÍTULO 1 INTRODUCCIÓN A LAS ANUALIDADES... 5

TABLA DE CONTENIDO TABLA DE CONTENIDO... 1 CAPÍTULO 1 INTRODUCCIÓN A LAS ANUALIDADES... 5 TABLA DE CONTENIDO Contenido TABLA DE CONTENIDO... 1 CAPÍTULO 1 INTRODUCCIÓN A LAS ANUALIDADES... 5 OBJETIVOS DEL CAPÍTULO... 5 SIMBOLOGÍA... 5 1.1 FLUJOS FINANCIEROS Y FLUJOS DE CAJA... 6 1.2 PERIODICIDADES

Más detalles

FÓRMULA PARA LA LIQUIDACION DE INTERESES Y PAGOS PARA PRÉSTAMO CRÉDITO POR CONVENIO: CASO DE CUMPLIMIENTO

FÓRMULA PARA LA LIQUIDACION DE INTERESES Y PAGOS PARA PRÉSTAMO CRÉDITO POR CONVENIO: CASO DE CUMPLIMIENTO FÓRMULA PARA LA LIQUIDACION DE INTERESES Y PAGOS PARA PRÉSTAMO CRÉDITO POR CONVENIO: CASO DE CUMPLIMIENTO NOTA: El cálculo considera que no existe período de gracia, que la primera cuota genera intereses

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I CURSO 05/06 PRIMERA SEMANA Día 2/01/06 a las 9 horas MATERIAL AUXILIAR: Calculadora financiera DURACIÓN: 2 horas 1. a) Comparación de capitales: Equivalencia

Más detalles

PROCESO PARA EL CÁLCULO DE INTERESES, COMISIONES Y GASTOS DE LOS PRODUCTOS PASIVOS DE CREDICHAVÍN

PROCESO PARA EL CÁLCULO DE INTERESES, COMISIONES Y GASTOS DE LOS PRODUCTOS PASIVOS DE CREDICHAVÍN PROCESO PARA EL CÁLCULO DE INTERESES, COMISIONES Y GASTOS DE LOS PRODUCTOS PASIVOS DE CREDICHAVÍN El presente documento detalla el procedimiento a seguir para el cálculo de intereses, comisiones y gastos

Más detalles

Unidad 12. Anualidades Diferidas

Unidad 12. Anualidades Diferidas Unidad 12 Anualidades Diferidas Una anualidad diferida es aquella cuyo plazo no comienza sino hasta después de haber transcurrido cierto número de periodos de pago; este intervalo de aplazamiento puede

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: ADMINISTRACIÓN

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: ADMINISTRACIÓN UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: ADMINISTRACIÓN PROGRAMA DE LA ASIGNATURA DE: MATEMÁTICAS FINANCIERAS IDENTIFICACIÓN DE LA ASIGNATURA MODALIDAD:

Más detalles

Por ciento y estimación (páginas 334 337)

Por ciento y estimación (páginas 334 337) A NOMRE FECHA PERÍODO Por ciento y estimación (páginas 334 337) Los siguientes ejemplos muestran dos modos diferentes de estimar porcentajes. A Estima el 2% de 96. Redondea 2% a 20% y 96 a 200. Usa una

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemáticas Financieras 1 Sesión No. 5 Nombre: Interés Compuesto Contextualización En las estrategias del ahorro o solicitud de crédito, cada cliente puede decidir entre hacer un trato con interés simple

Más detalles

ARITMÉTICA MERCANTIL

ARITMÉTICA MERCANTIL 2 ARITMÉTICA MERCANTIL Página 48 PARA EMPEZAR, REFLEXIONA Y RESUELVE Problema 1 En cuánto se transforman 250 euros si aumentan el 12? 250 1,12 = 280 Calcula en cuánto se transforma un capital C si sufre

Más detalles

PROCEDIMIENTO PARA CÁLCULO DE PAGOS TARJETA EMPRESARIAL ORO, CORPORATE Y CUENTA DE VIAJES

PROCEDIMIENTO PARA CÁLCULO DE PAGOS TARJETA EMPRESARIAL ORO, CORPORATE Y CUENTA DE VIAJES PROCEDIMIENTO PARA CÁLCULO DE PAGOS TARJETA EMPRESARIAL ORO, CORPORATE Y CUENTA DE VIAJES En este documento se establece el procedimiento para el cálculo de Pago Total de las tarjetas de crédito: Corporate,

Más detalles

Capítulo 1 Conceptos básicos

Capítulo 1 Conceptos básicos Capítulo 1 Conceptos básicos Introducción Las matemáticas financieras son una rama de las matemáticas aplicadas cuyo objetivo es estudiar el valor del dinero en el tiempo, para lo cual emplea técnicas,

Más detalles

DEPOSITO A PLAZO FIJO Moneda Nacional

DEPOSITO A PLAZO FIJO Moneda Nacional DEPOSITO A PLAZO FIJO Moneda Nacional FORMULA PARA EL CÁLCULO DE INTERESES Conceptos: I (Interés) = D (Depósito) = Importe de intereses que generará el depósito efectuado en un periodo de tiempo. Monto

Más detalles

SINTESIS. Alumno: César Pérez Acosta. Matrícula: 0121-1200-1300. Carrera: Contaduría. Materia: Matemáticas Financieras 1307

SINTESIS. Alumno: César Pérez Acosta. Matrícula: 0121-1200-1300. Carrera: Contaduría. Materia: Matemáticas Financieras 1307 SINTESIS Alumno: César Pérez Acosta Matrícula: 0121-1200-1300 Carrera: Contaduría Materia: Matemáticas Financieras 1307 Fecha de presentación de trabajo: 25 de Noviembre de 2011 Bibliografía: Matemáticas

Más detalles

El futuro en tus manos adultos y adultos

El futuro en tus manos adultos y adultos Atención: Tema: Instructores de El futuro en tus manos Tests previos y posteriores para adultos y adultos jóvenes Si usted usa los cursos de El futuro en tus manos para adultos y adultos jóvenes con un

Más detalles

FORMULAS Y EJEMPLOS EXPLICATIVOS

FORMULAS Y EJEMPLOS EXPLICATIVOS FORMULAS Y EJEMPLOS EXPLICATIVOS DEFINICIONES a) Capital: Es el monto del préstamo o crédito es decir, la deuda contraída con Credivisión b) Interés: Es la retribución que se paga por el uso del dinero

Más detalles

TEMA 12: OPERACIONES FINANCIERAS

TEMA 12: OPERACIONES FINANCIERAS TEMA 12: OPERACIONES FINANCIERAS 1. OPERACIONES FINANCIERAS Son aquellas operaciones en las que inversores y ahorradores se ponen de acuerdo y pactan un tipo de interés y un plazo que cubran sus necesidades

Más detalles

UNIDADES TECNOLÓGICAS DE SANTANDER GUÍA DE ESTUDIO No. 1

UNIDADES TECNOLÓGICAS DE SANTANDER GUÍA DE ESTUDIO No. 1 fe UNIDAD ACADÉMICA UNIDAD TEMÁTICA DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA: MATEMATICAS FINANCIERAS COSTO DEL DINERO COMPETENCIA 1. Analizar las teorías y conceptos del valor del dinero en el tiempo,

Más detalles

3.7. FONDOS DE AMORTIZACIONES

3.7. FONDOS DE AMORTIZACIONES 1 BIBLIOTECA VIRTUAL de Derecho, Economía y Ciencias Sociales ADMINISTRACIÓN FINANCIERA I Arturo García Santillán 3.7. FONDOS DE AMORTIZACIONES 3.7.1. CONCEPTOS BÁSICOS Habiendo estudiado las amortizaciones

Más detalles

Introducción a las Matemáticas Financieras Carlos Mario Morales Castaño

Introducción a las Matemáticas Financieras Carlos Mario Morales Castaño Introducción a las Matemáticas Financieras Carlos Mario Morales Castaño Finanzas del Proyecto - Carlos Mario Morales C Finanzas del proyecto Introducción a las Matemáticas Financieras No está permitida

Más detalles

Pauta Auxiliar N 3. Durante el año 2007 Pedro González tuvo los siguientes ingresos:

Pauta Auxiliar N 3. Durante el año 2007 Pedro González tuvo los siguientes ingresos: IN46A-1 Contabilidad y Control de Gestión Profesor: Eduardo Pantoja Auxiliar: Soledad Torres Villanueva Pauta Auxiliar N 3 Problema 1 Durante el año 2007 Pedro González tuvo los siguientes ingresos: a.

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID EXAMEN MATEMATICAS FINANCIERAS ICADE SEPTIEMBRE 2007 PRIMERA PREGUNTA (1 punto) Razonar qué sería preferible para una operación de inversión: - Un tanto nominal del 6%, capitalizable por meses - Un tanto

Más detalles

FAMILIA DE PASIVOS Cuentas de Ahorros

FAMILIA DE PASIVOS Cuentas de Ahorros Cuentas de Ahorros s Divisa Soles Dólares Euros Condiciones Cuenta Fácil Cuenta Ganadora Cuenta Sueldo Cuenta Independencia Cuenta Senior Cuenta Contiahorro Ahorro Vivienda 1.- Capitalización diaria con

Más detalles

Fundamentos de valor del dinero en el tiempo

Fundamentos de valor del dinero en el tiempo Fundamentos de valor del dinero en el tiempo Fundamentos básicos Dr. José Luis Esparza A. Valor del Dinero en el tiempo En la práctica, siempre es posible invertir el dinero, ya sea en un banco, en inversiones

Más detalles

SESION 03 = +. = (1+ ) = (1+ ) = +. = (1+ )= (1+ )(1+ ) Igualmente para el tercer año la cantidad F 3 es:

SESION 03 = +. = (1+ ) = (1+ ) = +. = (1+ )= (1+ )(1+ ) Igualmente para el tercer año la cantidad F 3 es: SESION 03 1. FACTORES DE INGENIERIA ECONOMICA Y SU EMPLEO 1.1 FACTORES DE PAGO UNICO (F/P Y P/F) A) Deducción Factor Cantidad Compuesta Pago Único (FCCPU) o (F/P) Es el factor fundamental en la ingeniería

Más detalles

POTENCIA 1 + 0,07 1,07 2 1,144900 Excel. Es decir, necesito invertir hoy 873.44 dlls/ps para obtener dentro de dos años 1,000 a una tasa anual del 7%

POTENCIA 1 + 0,07 1,07 2 1,144900 Excel. Es decir, necesito invertir hoy 873.44 dlls/ps para obtener dentro de dos años 1,000 a una tasa anual del 7% 1 Continuación de VALOR FUTURO En términos generales, se establece que si se invierte a un periodo dado, a una tasa de interés r (también se utiliza la literal i ), la inversión crecerá a [1+r] por cada

Más detalles

2. ECUACIONES LINEALES O DE PRIMER GRADO

2. ECUACIONES LINEALES O DE PRIMER GRADO Curso de Apoyo en Matemática. ECUACIONES LINEALES O DE PRIMER GRADO El objetivo de esta unidad es repasar las ecuaciones lineales o de primer grado y resolver ecuaciones lineales por medio de propiedades

Más detalles

Gestión Financiera. El Valor del Dinero en el tiempo

Gestión Financiera. El Valor del Dinero en el tiempo Gestión Financiera El Valor del Dinero en el tiempo El Valor del Dinero en el Tiempo Este concepto se basa en el sentido común siguiente: Un dólar pagado a Ud. en un año más, tiene menos valor que un dólar

Más detalles

Unidad 4. Capitalización compuesta y descuento compuesto

Unidad 4. Capitalización compuesta y descuento compuesto Unidad 4. Capitalización compuesta y descuento compuesto 0. ÍNDICE. 1. CAPITALIZACIÓN COMPUESTA. 1.1. Concepto. 1.2. Cálculo de los intereses totales y del interés de un período s. 1.3. Cálculo del capital

Más detalles

APLICACIÓN DE FORMULAS PARA EL CALCULO DE INTERES PARA UN DEPOSITO A PLAZO FIJO DPF

APLICACIÓN DE FORMULAS PARA EL CALCULO DE INTERES PARA UN DEPOSITO A PLAZO FIJO DPF REGION I 1 APLICACIÓN DE FORULAS PARA EL CALCULO DE INTERES PARA UN DEPOSITO A PLAZO FIJO DPF CONSIDERACIONES: - Se considera un horizonte de 360 días por año. - Los plazos fijos tienen una capitalización

Más detalles

UNIVERSIDAD POPULAR DEL CESAR Vicerrectoría Académica Comité Técnico de Autoevaluación y Acreditación PLAN DE MATERIAS ACADEMUSOFT 3.

UNIVERSIDAD POPULAR DEL CESAR Vicerrectoría Académica Comité Técnico de Autoevaluación y Acreditación PLAN DE MATERIAS ACADEMUSOFT 3. FACULTAD DE: _Ingenierías y Tecnológicas PROGRAMA DE: Ingeniería de Sistemas NOMBRE DE LA MATERIA: ELECTIVA APERTURA AREA DE FINANZAS Semestre: _SEPTIMO Código: _IS0039SA No de Créditos 2 H. Teórica: 2

Más detalles

Ejercicios resueltos de progresiones aritméticas

Ejercicios resueltos de progresiones aritméticas Ejercicios resueltos de progresiones aritméticas 1) En cada una de las progresiones siguientes, halla los términos que faltan en cada una de ellas: a) 4, 8, 12, 16,, 24,,, 36, 40... b) 1, 3/2,,,,,,,, 11/2...

Más detalles

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas.

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas. . Conocimientos previos. Funciones exponenciales y logarítmicas.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.

Más detalles

Guía con ejemplos explicativos de fórmulas y cálculos de Interés en operaciones de créditos FONDO DEL INSTITUTO NICARAGÜENSE DE DESARROLLO (FINDE)

Guía con ejemplos explicativos de fórmulas y cálculos de Interés en operaciones de créditos FONDO DEL INSTITUTO NICARAGÜENSE DE DESARROLLO (FINDE) FONDO DEL INSTITUTO NICARAGÜENSE DE DESARROLLO (FINDE) (Asociación Nicaragüense sin Fines de Lucro) (Managua, Nicaragua) Guía con ejemplos explicativos de fórmulas y cálculos de Interés en operaciones

Más detalles

GUIA DE APRENDIZAJE. 1 Introducción 2 Importancia de las matemáticas financieras. 1 Cálculo del valor presente equivalente de un valor futuro

GUIA DE APRENDIZAJE. 1 Introducción 2 Importancia de las matemáticas financieras. 1 Cálculo del valor presente equivalente de un valor futuro PÁGINA: 1 de 6 1. DESCRIPCIÓN DE LA UNIDAD DE APRENDIZAJE UNIDAD DE APRENDIZAJE ASIGNATURA: CONTABILIDAD OBJETIVO DE APRENDIZAJE: Identificar, analizar y aplicar los conceptos básicos de Matemáticas Financieras,

Más detalles

MÓDULO GESTIÓN FINANCIERA ADMINISTRACIÓN Y FINANZAS DAVID ESPINOSA SALAS - I.E.S. GREGORIO PRIETO (VALDEPEÑAS) UNIDAD 5. RENTAS. Unidad 5.

MÓDULO GESTIÓN FINANCIERA ADMINISTRACIÓN Y FINANZAS DAVID ESPINOSA SALAS - I.E.S. GREGORIO PRIETO (VALDEPEÑAS) UNIDAD 5. RENTAS. Unidad 5. Unidad 5. Rentas 0. ÍNDICE. 1. CONCEPTO Y ELEMENTOS DE UNA RENTA FINANCIERA. 2. CLASIFICACIÓN DE LAS RENTAS. 3. RENTAS CONSTANTES. 3.1. Rentas constantes, inmediatas y pospagables. 3.2. Rentas constantes,

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL PROGRAMA: INGENIERIA ECONOMICA CÓDIGO ASIGNATURA: 2215 834 PRE-REQUISITO: NINGUNO SEMESTRE: OCTAVO UNIDADES

Más detalles

3Soluciones a los ejercicios y problemas

3Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas P r o g r e s i o n e s a r i t m é t i c a s Pág. 8 Escribe los cinco primeros términos y a 0 de las siguientes progresiones aritméticas: a) a ; d b) a ; d c) a

Más detalles

SESIÓN 1. Ecuaciones Lineales o de primer grado.

SESIÓN 1. Ecuaciones Lineales o de primer grado. SESIÓN 1. Ecuaciones Lineales o de primer grado. A lo largo de esta unidad resolvemos situaciones problemáticas por medio de ecuaciones lineales con una incógnita. Analicemos las siguientes igualdades:

Más detalles

ECUACIONES DE VALOR $2.00 $2.50 $3.00 $3.50 DIC.98 ABRIL 99 OCT. 99 MAR.2000

ECUACIONES DE VALOR $2.00 $2.50 $3.00 $3.50 DIC.98 ABRIL 99 OCT. 99 MAR.2000 5. INTERÉS COMPUESTO 5.1. Ecuación del monto 5.2. Fecha de vencimiento promedio o equivalente ECUACIONES DE VALOR Para poder entender lo que son las ecuaciones de valor, para que nos sirven y cómo entenderlas,

Más detalles

FÓRMULAS TARJETA DE CRÉDITO

FÓRMULAS TARJETA DE CRÉDITO FÓRMULAS TARJETA DE CRÉDITO CONCEPTOS PREVIOS PARA REALIZAR EL CÁLCULO DE INTERESES: 1. Tipos de Tarjeta de Crédito BANCO GNB (persona natural): a) VISA Clásica. b) VISA Oro. c) VISA Platinum. 2. Crédito:

Más detalles

ORIENTACIONES ACADÉMICAS PARA EL CURSO MATEMÁTICA COMERCIAL CÓDIGO: 03025 SEMANA A

ORIENTACIONES ACADÉMICAS PARA EL CURSO MATEMÁTICA COMERCIAL CÓDIGO: 03025 SEMANA A UNIVERSIDAD ESTATAL A DISTANCIA VICERRECTORÍA ACADÉMICA ESCUELA CIENCIAS SOCIALES Y HUMANIDADES PROGRAMA DE SECRETARIADO ADMINISTRATIVO ORIENTACIONES ACADÉMICAS PARA EL CURSO MATEMÁTICA COMERCIAL CÓDIGO:

Más detalles

CATALOGO DE ARCHIVOS DEL SISTEMA DE INFORMACION.

CATALOGO DE ARCHIVOS DEL SISTEMA DE INFORMACION. CATALOGO DE ARCHIVOS DEL SISTEMA DE INFORMACION. SISTEMA CONTABLE Código NOMBRE Periodicidad Plazo (días hábiles) C01 Modelo de Balance Mensual 6 C02 Modelo de Resultados Mensual 6 C03 Control de Encaje

Más detalles

Criterios de Decisión y Matemática Financiera

Criterios de Decisión y Matemática Financiera Facultad de Arquitectura, Urbanismo y Paisaje Escuela de Arquitectura del Paisaje Criterios de Decisión y Matemática Financiera Mario Reyes Galfán Ingeniero Ambiental Arquitectura del Paisaje 06.09.2010

Más detalles

RELACIÓN DE EJERCICIOS DE REPASO DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I

RELACIÓN DE EJERCICIOS DE REPASO DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Dto. de MATEMÁTICAS RELACIÓN DE EJERCICIOS DE REPASO DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1. Calcular, de forma exacta las siguientes operaciones. a) 1, 0, b) 0,7:0,916. Representa el conjunto

Más detalles

INGENIERÍA ECONÓMICA

INGENIERÍA ECONÓMICA INGENIERÍA ECONÓMICA ESQUEMA DE FINANCIAMIENTO PARA UNA PLANTA QUÍMICA Figura 7.1 BANCO $ Ganancias Acuerdo 1 COMPAÑIA $ Ganancias Acuerdo 2 Químicos de Bajo Valor PROYECTO Químicos de Alto Valor DIFERENTES

Más detalles

ANEXO A LA APERTURA DE CUENTA AHORRO CASA

ANEXO A LA APERTURA DE CUENTA AHORRO CASA ANEXO A LA APERTURA DE CUENTA AHORRO CASA Estimado Cliente: El abrir una cuenta Ahorro Casa no te genera ningún tipo de obligación, ni compromiso, para solicitar un préstamo hipotecario de Interbank. Cuando

Más detalles

Ejercicio: Introducción al análisis financiero a través de ratios

Ejercicio: Introducción al análisis financiero a través de ratios Ejercicio: Introducción al análisis financiero a través de ratios Este caso se plantea como objetivo conocer aquellos ratios más frecuentemente utilizados para el análisis de la información financiera

Más detalles

PLANIFICACIÓN DE LA UNIDAD DIDÁCTICA 3 Grado: 4to - Secundaria Área: MATEMÁTICA

PLANIFICACIÓN DE LA UNIDAD DIDÁCTICA 3 Grado: 4to - Secundaria Área: MATEMÁTICA PLANIFICACIÓN DE LA UNIDAD DIDÁCTICA 3 Grado: 4to - Secundaria Área: MATEMÁTICA I. TÍTULO DE LA UNIDAD Nos informamos para la mejor forma de ahorro II. SITUACIÓN SIGNIFICATIVA El valor del dinero en el

Más detalles

D50 Acreedores financieros Mensual 10 D51 Créditos para el financiamiento de estudios superiores

D50 Acreedores financieros Mensual 10 D51 Créditos para el financiamiento de estudios superiores Manual del Sistema de Información ARCHIVOS MAGNÉTICOS Catálogo de archivos hoja 2 SISTEMA DEUDORES Código NOMBRE Periodicidad Plazo (días hábiles) D02 Deudas Específicas Mensual 7 D03 Características de

Más detalles

CASH MANAGEMENT GESTIÓN DEL EFECTIVO

CASH MANAGEMENT GESTIÓN DEL EFECTIVO CASH MANAGEMENT GESTIÓN DEL EFECTIVO Introducción Antes de profundizar con cualquier tema relacionado con la Tesorería conviene empezar por conocer que conceptos, principios y características están más

Más detalles

Lo que necesito saber de mi crédito de consumo. informativo para administración de créditos

Lo que necesito saber de mi crédito de consumo. informativo para administración de créditos Lo que necesito saber de mi crédito de consumo informativo para administración de créditos Qué es lo primero que debo saber de un crédito de consumo? 1 2 3 Qué es un crédito de consumo? Es un préstamo

Más detalles
Больше >> | Stretch Armstrong and the Flex Fighters - Season 2 | Watch now!