Sucesiones (páginas )


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sucesiones (páginas 511 515)"

Transcripción

1 A NMRE FECHA PERÍD Sucesiones (páginas 5 55) Una sucesión es una lista de números en un cierto orden. Cada número se llama término de la sucesión. En una sucesión aritmética, la diferencia entre cualquier par de términos consecutivos es la misma. La diferencia se llama diferencia común. En una sucesión geométrica, los términos consecutivos de una sucesión se forman al multiplicar por un factor constante llamado término previo. A Identifica el patrón en, 9, 6, 3, Identifica el patrón en 0, 0, 5,.5, 0, escribe los siguientes cinco.5, escribe los siguientes tres términos. términos. Prueba 9 Si sumas 3 a 9, obtienes el siguiente término, 6? Sí, este patrón continúa, así que ésta es una sucesión aritmética con una diferencia común de Los siguientes cinco términos son 7, 4,, 5.. Indiquen si la sucesión 0, 3, 6, 9, es aritmética, geométrica o ninguna. Luego calculen los siguientes tres términos. AYUDA: Qué número pueden sumarle a cada término para obtener el siguiente término? No ha una diferencia común. Con qué número se puede multiplicar 0 para que te dé 0? 0.5. Continúa esta razón común? Sí, así que esta sucesión geométrica tiene una razón común de 0.5. Los siguientes tres términos son 0.65, Indiquen si la sucesión 7, 6, 6, 5, es aritmética, geométrica o ninguna. Luego calculen los siguientes tres términos. AYUDA: Qué número pueden sumarle a cada término para obtener el siguiente término? Indica si la sucesión es aritmética, geométrica o ninguna. Si es aritmética o geométrica, indica la diferencia común o la razón común. Escribe los siguientes tres términos de cada sucesión. 3,,,, 3,, 0, 3, 5. 88, 93, 99, 06, , 40, 0, 0, 4, 3, 0, 7, 8, 8, 9, 0, 9. Acondicionamiento físico Hank desea aumentar el número de abdominales que hace cada día por Si el primer día hace, cuántas tratará de hacer el 0º día? Prueba estandarizada de práctica Cuál es el próimo término en la sucesión.3,.7,.,.5,? A 3 C.9 D.7 Respuestas:. aritmética;, 5, 8. aritmética; 5, 4, 4 geométrica; ;,, ninguna; 7,, 8 5. ninguna; 4, 3, geométrica; ; 5,, aritmética; 7; 4, 3, 38 aritmética; ; 0, , C Glencoe/McGraw-Hill 9 Matemáticas: Aplicaciones conceptos, Curso 3

2 A NMRE FECHA PERÍD Funciones (páginas 57 50) Una relación en donde una cosa depende de otra cosa se llama función. En una función, una o más operaciones se realizan en un número para obtener otro número. Así que, el segundo número depende de, o es una función del primer número. El valor de f() (lo que se lee como "función de o f de ) depende del valor de. Puedes organizar la entrada (número original), la regla (las operaciones llevadas a cabo en la entrada) la salida (el valor de la función) en una tabla de funciones Calcula como ésta. valores Entrada o dominio Regla Salida o rango para f() funciones El dominio contiene todos los valores de el rango contiene todos los valores de f(). Completa la tabla de funciones de la derecha. Reemplaza en la regla con cada valor de entrada. La regla,, es (0) ó para la entrada de 0. Pon el valor reducido de f() en la columna de salida. Repite estos mismos pasos para los valores de entrada de,. Entrada Regla Salida f() ( ) 0 (0) () 3 () 5. Completa esta tabla de funciones. 3 f() Calcula cada valor de la función.. f (6) si f () 3 f (0.5) si f () 0.5 f () si f () 5. f () si f () 3 6. f ( 4) si f () 5 f (0) si f () 5 Prueba estandarizada de práctica Si f () 0, calcula f ( 3). A 38 C 56 D 36 Respuestas:. 6, 0,.5, 6, Glencoe/McGraw-Hill 9 Matemáticas: Aplicaciones conceptos, Curso 3

3 A NMRE FECHA PERÍD Grafica funciones lineales (páginas 5 55) Una función cuas gráficas de las soluciones forman una línea recta se llama función lineal. Grafica una función lineal Para graficar una función lineal, comienza por hacer una tabla de funciones. Lista por lo menos tres valores de. Grafica cada par ordenado. Conecta los puntos con una línea recta. Añade flechas a las puntas de la línea para mostrar que la línea continúa indefinidamente. Grafica la función 3. Escoge algunos valores de calcula los valores correspondientes a. Haz una tabla para mostrar los pares ordenados. (, 4) 3 (, ) 3( ) 5 (, 5) 0 3(0) (0, ) 3() (, ) 3() 4 (, 4) Luego grafica los pares ordenados de tu tabla. Dibuja la recta que une a estos puntos. Esta recta es la gráfica de 3. (, ) (0, ) (, 5). Grafiquen la función. Grafiquen la función 6. AYUDA: Hagan una tabla de funciones para AYUDA: Hagan una tabla de funciones para los valores de de, 0,,. los valores de de, 0,, 6. Grafica cada función Prueba estandarizada de práctica Si cuesta 5 centavos fabricar un borrador, cuánto costaría fabricar 0? Calcula el par ordenado que representaría esto en una gráfica lineal. A (0, $.50) (0, $5) C ($.5, 8) D (, $5) Respuestas: Ver clave de respuestas. 9. A Glencoe/McGraw-Hill 93 Matemáticas: Aplicaciones conceptos, Curso 3

4 A NMRE FECHA PERÍD La fórmula de la pendiente (páginas 56 59) Puedes calcular la pendiente de una recta al usar las coordenadas de cualesquiera dos puntos sobre la recta. La pendiente m de una recta que pasa por los puntos (, ) (, ) es la razón de la diferencia entre las coordenadas con respecto a la diferencia entre las coordenadas correspondientes o m, donde. Calcula la pendiente de la recta que pasa por L( 3, 4) M(, ). L ( 3, 4) m Definición de pendiente 4 ( m, ) ( 3, 4) M (, ) ( 3) (, ) (, ) m = 3 Reduce. 5 Calcula la pendiente de la recta que pasa por cada par de puntos.. P (, ), Q ( 3, 3). R ( 8, 9), S (, ) X ( 4, 5), Y ( 8, ) M (3, 7), N (9, 7) 5. G (0, 0), H (7, 6) 6. V (3, ), W (, ) P 5, 8, Q 3 5, 7 8 R 3 4, 4, S 3 4, J (5,.5), K ( 6.5,.5) Usa la siguiente información para los ejercicios 6 Carolina vende camisas para el club de animadores. Después de vender 3 camisas, tenía $45. Después de vender 6 camisas, tenía $90. Después de vender 7 camisas, tenía $ Grafica la información con el número de camisas en el eje horizontal la ganancia en dólares en el eje vertical. Dibuja una recta a través de los puntos.. Cuál es la pendiente de la gráfica?. Qué representa la pendiente de la gráfica? Prueba estandarizada de práctica Cuál gráfica tiene una pendiente de? A C D Respuestas: Ver clave de respuestas.. 5. precio por camisa 5 Glencoe/McGraw-Hill 94 Matemáticas: Aplicaciones conceptos, Curso 3

5 A NMRE FECHA PERÍD Forma pendiente-intersección (páginas ) Una ecuación de una recta se puede escribir en la forma = m + b. Esto se llama forma pendiente-intersección, donde m es la pendiente de la recta b es la intersección de la recta. Por ejemplo, en la ecuación = 3 + ( ), la pendiente es 3 la intersección es. Determina la pendiente la intersección de la gráfica de cada ecuación. A 3 3 Escribe la ecuación original. 3 + Escribe la ecuación en la forma m b ( ) Escribe la ecuación original. Escribe la ecuación en la forma m b. La pendiente de la gráfica es 3 la intersección es. La pendiente de la gráfica es 4 la intersección es. Determinen la pendiente la intersección de la gráfica de cada ecuación Determina la pendiente la intersección de la gráfica de cada ecuación Grafica cada ecuación, usando la pendiente la intersección Prueba estandarizada de práctica Cuál es la ecuación de la gráfica de la derecha? A = 3 3 C D 3 3 (, 4) (3, 0) (0, 3) ) Respuestas:. ;. ; 6 4; ; 5. 3 ; 7 6. ; ; 4 3; 9. 4; Ver clave de respuestas. 6. D Glencoe/McGraw-Hill 95 Matemáticas: Aplicaciones conceptos, Curso 3

6 A NMRE FECHA PERÍD Gráficas de dispersión (páginas ) Una gráfica de dos conjuntos de datos como pares ordenados es una gráfica de dispersión. Las gráficas de dispersión pueden indicar si dos conjuntos de datos están relacionados. Determina la relación Para determinar si dos conjuntos de datos están relacionados, imagina que se dibuja una recta que la mitad de los puntos están sobre la recta la otra mitad están debajo. Una recta con pendiente ascendente hacia la derecha muestra una relación positiva. Una recta con pendiente descendente hacia la derecha muestra una relación negativa. Si los puntos están dispersos no amontonados a lo largo de la recta, la gráfica de dispersión muestra que no eiste relación entre los conjuntos de datos. Determina si una gráfica de dispersión de los datos para la edad el peso de las personas menores de mostraría una relación positiva, negativa o ninguna. En los niños las personas jóvenes, a medida que la edad aumenta, también aumenta el peso en la maoría de los casos. Una gráfica de dispersión de estos datos mostraría una relación positiva.. Determinen si una gráfica de dispersión. Determinen si una gráfica de dispersión de los datos para un saldo bancario de los datos para las horas de sueño por dinero gastado mostraría una relación noche la estatura mostraría una relación positiva, negativa o ninguna. Supongan positiva, negativa o ninguna. que todos tienen el mismo ingreso. AYUDA: Influen entre sí las las horas de AYUDA: Sube o baja el saldo bancario a medida que aumenta el gasto de dinero? sueño por noche la estatura? Determina si una gráfica de dispersión de los datos para las siguientes situaciones podría mostrar una relación positiva, negativa o ninguna. temperatura horas de luz solar edad después de los 70 los problemas de salud 5. edad de una computadora su valor 6. horas de uso de baterías la vida restante de las baterías número de asientos en un carro el último dígito en su número de placa Prueba estandarizada de práctica Qué tipo de relación muestra la gráfica de dispersión de la derecha? A positiva negativa C no D inversa Respuestas:. negativa. no ha relación positiva positiva 5. negativa 6. negativa no ha relación Glencoe/McGraw-Hill 96 Matemáticas: Aplicaciones conceptos, Curso 3

7 A NMRE FECHA PERÍD Grafica sistemas de ecuaciones (páginas ) Un conjunto de dos o más ecuaciones se llama sistema de ecuaciones. Cuando calculas un par ordenado que es una solución de todas las ecuaciones en el sistema, has resuelto el sistema. Resuelve sistemas de dos ecuaciones usando gráficas El par ordenado que nombra el punto donde las dos rectas se intersecan (o se cruzan) es la solución del sistema de ecuaciones. Las coordenadas de este par ordenado convierten en verdaderas las ecuaciones de cada una de las rectas. Verifica tu solución en ambas ecuaciones. Resuelve el sistema de ecuaciones usando gráficas. 3 Primero haz una tabla de funciones para cada ecuación. 3 (, ) 3( ) 5 (, 5) 0 3(0) (0, ) 3() (, ) 3() 4 (, 4) = = 3 (, ) ( ) 3 (, 3) 0 0 (0, ) (, ) 0 (, 0) Calcula las coordenadas, al mirar la gráfica, del punto en donde las rectas se cruzan. (, ) Verifica esta solución en ambas ecuaciones. Es 3()? Sí. Grafica los pares ordenados para cada Es? Sí. tabla dibuja cada recta. La solución de este sistema es (, ).. Resuelvan el sistema 3. Resuelvan el sistema usando gráficas. usando gráficas. AYUDA: Las rectas se intersecan en el cuadrante III. AYUDA: Seleccionen por lo menos 3 valores para en cada ecuación. Resuelve cada sistema de ecuaciones usando gráficas Prueba estandarizada de práctica Caminas por el traecto 6 8 tu amigo Ramón camina por el traecto 8. En qué punto se intersecan sus traectos? A (0, 8) (, 4) C (, 4) D (, 4) Respuestas: 5. Ver clave de respuestas.. (, ). (0, ) (, 4) (4, 5) 5. ( 3, 5) Glencoe/McGraw-Hill 97 Matemáticas: Aplicaciones conceptos, Curso 3

8 A NMRE FECHA PERÍD Grafica desigualdades lineales (páginas ) Grafica desigualdades lineales Para graficar una desigualdad, primero grafica la ecuación correspondiente. Esta es la frontera. Si la desigualdad contiene los símbolos o, entonces usa una recta continua para indicar que la frontera está incluida en la gráfica. Si la desigualdad contiene el símbolo o, entonces usa una recta de puntos para indicar que la frontera no está incluida en la gráfica. Después, prueba con cualquier punto sobre la recta o debajo de ella, para determinar qué región es la solución de la desigualdad. Grafica Grafica la recta de la frontera Como se usa en la desigualdad, haz una recta de puntos. (3, 0) (0, 3) Prueba con un punto que no esté sobre la recta de la frontera, como por ejemplo (0, 0). 3 Escribe la desigualdad. 0? 0 3 Reemplaza con 0 con Reduce. Como (0, 0) es una solución de 3, sombrea la región que contiene (0, 0). (3, 0) (0, 3) Grafiquen cada desigualdad Grafica cada desigualdad Prueba estandarizada de práctica Qué par ordenado no es una solución de? A (0, 0) (, 3) C (3, ) D (4, ) Respuestas:. Ver clave de respuestas. Glencoe/McGraw-Hill 98 Matemáticas: Aplicaciones conceptos, Curso 3

9 NMRE FECHA PERÍD Repaso del capítulo Mapa de funciones Los amigos de Frann le dan un mapa para que pueda encontrar la mesa de picnic en el parque. El sitio del picnic se localiza en algún lugar en la gráfica de la función f () C A f() J L K E D F G H I. Completa la tabla de funciones para f () 3 f() 0 (0) 3 3. Grafica la función en el mapa. Cuáles puntos en el mapa podrían ser el sitio del picnic? Si el sitio del picnic está en el cuadrante II del mapa, en cuál punto está? 5. Ha un conjunto de columpios que está también en la gráfica de la función en el cuadrante III. Cuál punto es el conjunto de columpios? 6. Un gran árbol de pacana está también en la gráfica de la función en el cuadrante IV. Cuál punto es el árbol de pacana? Las respuestas se encuentran en la página Glencoe/McGraw-Hill 99 Matemáticas: Aplicaciones conceptos, Curso 3

Escribe expresiones y ecuaciones

Escribe expresiones y ecuaciones A NOMRE FECHA PERÍODO Escribe expresiones y ecuaciones (páginas 150 152) Los problemas del mundo fuera del salón de clases, por lo general, se dan en palabras. Uno traduce estos problemas en expresiones

Más detalles

Funciones lineales y no lineales (páginas 560 563)

Funciones lineales y no lineales (páginas 560 563) A NOMRE FECHA PERÍODO Funciones lineales y no lineales (páginas 560 563) Las funciones lineales tienen gráficas que son líneas rectas. Estas gráficas representan tasas de cambio constantes. Las funciones

Más detalles

Propiedades (páginas 333 336)

Propiedades (páginas 333 336) A NOMRE FECHA PERÍODO Propiedades (páginas 333 336) Las propiedades son enunciados abiertos que satisfacen todos los valores de las variables. Para multiplicar una suma por un número, Propiedad 3(5 2)

Más detalles

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano. Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta

Más detalles

Explorando la ecuación de la recta pendiente intercepto

Explorando la ecuación de la recta pendiente intercepto Explorando la ecuación de la recta pendiente intercepto Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Los puntos que están en la misma recta se dice que son. 2. Describe el

Más detalles

Enteros (páginas 294 298)

Enteros (páginas 294 298) A NOMRE FECHA PERÍODO Enteros (páginas 294 298) Un entero es cualquier número del siguiente conjunto de números enteros y sus opuestos: { 3, 2, 1, 0, 1, 2, 3, }. Los enteros mayores que cero son enteros

Más detalles

Enteros y valor absoluto (páginas 106 108)

Enteros y valor absoluto (páginas 106 108) A NOMRE FECHA PERÍODO Enteros y valor absoluto (páginas 106 108) Un entero es cualquier número del conjunto {, 3, 2, 1, 0, 1, 2, 3, }. Los enteros mayores de 0 son enteros positivos. Los enteros menores

Más detalles

Fracciones y decimales (páginas 62 66)

Fracciones y decimales (páginas 62 66) A NOMRE FECHA PERÍODO Fracciones y decimales (páginas 6 66) Un decimal que termina, tal como 0, es un decimal terminal Todos los decimales terminales son números racionales 0,000 Un decimal que se repite,

Más detalles

Funciones. Resumen del contenido

Funciones. Resumen del contenido C APÍTULO 7 Funciones Resumen del contenido En el Capítulo 7, los estudiantes aumentan su entendimiento del crecimiento lineal y de las ecuaciones observando en detalle una clase especial de relación llamada

Más detalles

Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos. Podemos denotar una sucesión como una lista

Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos. Podemos denotar una sucesión como una lista Cap 9 Sec 9.1 9.3 Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos. Podemos denotar una sucesión como una lista a 1, a 2, a 3, a n, Donde cada a k es un término

Más detalles

2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 6.- FUNCIONES. LÍMITES Y CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ

2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 6.- FUNCIONES. LÍMITES Y CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA.- FUNCIONES. LÍMITES CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

TRANSFORMACIONES DE f (x) = x 2 9.1.1 9.1.2. Ejemplo 1

TRANSFORMACIONES DE f (x) = x 2 9.1.1 9.1.2. Ejemplo 1 Capítulo 9 TRANSFORMACIONES DE f () = 2 9.1.1 9.1.2 A fin de lograr un buen dominio de la modelación de datos relaciones en situaciones cotidianas, los alumnos deben ser capaces de reconocer transformar

Más detalles

2. SISTEMAS DE ECUACIONES LINEALES. Introducción

2. SISTEMAS DE ECUACIONES LINEALES. Introducción 2. SISTEMAS DE ECUACIONES LINEALES Introducción El presente curso trata sobre álgebra lineal. Al buscarla palabra lineal en un diccionario se encuentra, entre otras definiciones la siguiente: lineal, perteneciente

Más detalles

Funciones constantes, lineales y afines 1.

Funciones constantes, lineales y afines 1. Funciones constantes, lineales y afines 1. 1.- Rectas horizontales y verticales. Ej.1.- A continuación tienes la gráfica de la recta y = 0. Qué puntos de corte tiene con los ejes? Qué posición tiene respecto

Más detalles

Razones (páginas 380 383)

Razones (páginas 380 383) A NOMRE FECHA PERÍODO Razones (páginas 80 8) Puedes comparar dos cantidades usando una razón. Comúnmente se expresa una razón como una fracción reducida. Si las dos cantidades que comparas tienen diferentes

Más detalles

Ejercicios resueltos de funciones

Ejercicios resueltos de funciones Ejercicios resueltos de funciones 1) Representa en un eje de coordenadas los siguientes puntos: A(1,5), B(-3,3), C(0, -4), D (2,0). 2) Representa en dos ejes de coordenadas las funciones siguientes: a)

Más detalles

Un plan para resolver problemas (páginas 6 9)

Un plan para resolver problemas (páginas 6 9) A NOMRE FECHA PERÍODO Un plan para resolver problemas (páginas 6 9) Puedes usar un plan de cuatro pasos para resolver un problema. Explora Planifica Resuelve Examina Lee cuidadosamente el problema. Hazte

Más detalles

Tema II: Programación Lineal

Tema II: Programación Lineal Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución

Más detalles

Factorización prima (páginas 197 200)

Factorización prima (páginas 197 200) A NOMRE FECHA PERÍODO Factorización prima (páginas 9 00) Un número primo es un número entero mayor que que tiene exactamente dos factores, y sí mismo. Un número compuesto es un número entero mayor que

Más detalles

Función lineal y afín

Función lineal y afín Función lineal y afín Objetivos 1. Comprender el concepto de ejes de coordenadas 2. Comprender el concepto de función 3. Obtener información a partir de la gráfica de una función 4. Manejar la función

Más detalles

LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE .

LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE . LA RECTA En geometría definimos a la recta como la sucesión infinita de puntos uno a continuación de otro en la misma dirección. En el plano cartesiano, la recta es el lugar geométrico de todos los puntos

Más detalles

PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4

PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 Los alumnos utilizaron la ecuación = m + b para graficar rectas describir patrones en los cursos anteriores. La Lección 2.1.1 es un repaso. Cuando la ecuación

Más detalles

9. Rectas e hipérbolas

9. Rectas e hipérbolas 08 SOLUCIONARIO 9. Rectas e hipérbolas Representa gráficamente las siguientes ecuaciones. Di cuáles son funciones y clasifícalas: 8. y =. FUNCIONES CONSTANTES LINEALES PIENSA CALCULA y = Halla mentalmente

Más detalles

Los números complejos

Los números complejos 7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

PROGRAMACIÓN LINEAL. 1. Introducción

PROGRAMACIÓN LINEAL. 1. Introducción PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas

Más detalles

TEMA 5 FUNCIONES ELEMENTALES II

TEMA 5 FUNCIONES ELEMENTALES II Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas

Más detalles

Cuaderno de Actividades 4º ESO

Cuaderno de Actividades 4º ESO Cuaderno de Actividades 4º ESO Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,

Más detalles

Actividades de refuerzo

Actividades de refuerzo MATEMÁTICAS 1º SECUNDARIA CUADERNO DE ACTIVIDADES DE REFUERZO Nombre: Curso: Fecha de entrega: 1 Números naturales. Divisibilidad 1. Rodea con una circunferencia los múltiplos de 4, y con un cuadrado los

Más detalles

Definición de Funciones MATE 3171

Definición de Funciones MATE 3171 Definición de Funciones MATE 3171 Función Una función, f, es una regla de correspondencia entre dos conjuntos, que asigna a cada elemento x de D exactamente un elemento de E : x 1 x 2 x 3 y 2 y 1 Terminología

Más detalles

UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp.

UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp. República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD II FUNCIONES Ing. Ronny Altuve Esp. Ciudad Ojeda, Septiembre de 2015 Función Universidad

Más detalles

Construcción de una línea perpendicular, dado un punto y una línea. 1. Dibuja una línea horizontal y un punto por encima de esa línea.

Construcción de una línea perpendicular, dado un punto y una línea. 1. Dibuja una línea horizontal y un punto por encima de esa línea. Materia: Matemática de Séptimo Tema: Rectas Perpendiculares Qué piensas cuando te dicen que dos líneas forman en un ángulo recto? Qué terminología usarías para describir a estas líneas? Después de revisar

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x): MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16 Función Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x 2 A exactamante un elemento

Más detalles

LA RECTA. Recuerda: Ejercicios de autoaprendizaje 1. Sea la gráfica siguiente:

LA RECTA. Recuerda: Ejercicios de autoaprendizaje 1. Sea la gráfica siguiente: LA RECTA Recuerda: Una recta es una función de la forma y = mx + n, siendo m y n números reales m es la pendiente de la recta y n es la ordenada en el origen La ordenada en el origen nos indica el punto

Más detalles

Desigualdades de dos variables

Desigualdades de dos variables Desigualdades de dos variables Ahora vamos a estudiar un caso más general. Cuando graficamos la ecuación: obtenemos una recta en al plano. + = 0 Cada punto que está sobre la recta satisface la ecuación.

Más detalles

a) A la mitad del número le sumo 3 y el resultado es 8 ( ) 9 b) En la ecuación 3x = 54 Qué valor puede tomar x? ( ) Rombo

a) A la mitad del número le sumo 3 y el resultado es 8 ( ) 9 b) En la ecuación 3x = 54 Qué valor puede tomar x? ( ) Rombo Guía Matemáticas 3 ELIGE LA RESPUESTA CORRECTA.. Anota en el paréntesis de la derecha la letra que corresponda. a) A la mitad del número le sumo 3 y el resultado es 8 9 b) En la ecuación 3 = 54 Qué valor

Más detalles

Por ciento y estimación (páginas 334 337)

Por ciento y estimación (páginas 334 337) A NOMRE FECHA PERÍODO Por ciento y estimación (páginas 334 337) Los siguientes ejemplos muestran dos modos diferentes de estimar porcentajes. A Estima el 2% de 96. Redondea 2% a 20% y 96 a 200. Usa una

Más detalles

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares. ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES SEMESTRE II VERSIÓN 03 FECHA: Septiembre 29 de 2011 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la

Más detalles

La proporcionalidad. Proporcionalidad. Variable Tablas Proporciones. Constante de Directa Inversa proporcionalidad Gráfico Gráfico

La proporcionalidad. Proporcionalidad. Variable Tablas Proporciones. Constante de Directa Inversa proporcionalidad Gráfico Gráfico La proporcionalidad El concepto de proporcionalidad aparece constantemente en situaciones y fenómenos del diario vivir, como es el caso de los dibujos a escala, que son una aplicación de la proporcionalidad

Más detalles

SISTEMAS DE INECUACIONES LINEALES

SISTEMAS DE INECUACIONES LINEALES SISTEMAS DE INECUACIONES LINEALES I.- Grafique /3 +3 verifique si los siguientes puntos pertenecen o no a la recta: 1) (,) ) (,4) 3. (,) 4) (6,5) 5) (-3,) 6) (6,8) 7) (-6,) 8) (-9,5) Soluciones de Inecuaciones

Más detalles

ECUACIÓN DE LA RECTA. Dibujando los ejes de coordenadas y representando el punto vemos que está situado sobre el eje de abscisas.

ECUACIÓN DE LA RECTA. Dibujando los ejes de coordenadas y representando el punto vemos que está situado sobre el eje de abscisas. ECUACIÓN DE LA RECTA. El punto (, 0) está situado: a) Sobre el eje de ordenadas. b) En el tercer cuadrante. c) Sobre el eje de abscisas. (Convocatoria junio 00. Examen tipo D) Dibujando los ejes de coordenadas

Más detalles

Datos de tipo cuantitativo

Datos de tipo cuantitativo Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 2: medidas de tipo paramétrico Documento Datos de tipo cuantitativo Son aquellos que están representados por números.

Más detalles

Ángulos (páginas 413 415)

Ángulos (páginas 413 415) NOMRE FECH PERÍODO Ángulos (páginas 413 415) Un ángulo está formado de dos rayos o lados, con un extremo o vértice. Los ángulos se miden en unidades llamadas grados. Los ángulos se clasifican según sus

Más detalles

PROPORCIONALIDAD. FIGURAS SEMEJANTES

PROPORCIONALIDAD. FIGURAS SEMEJANTES TEMA PROPORCIONALIDAD. FIGURAS SEMEJANTES. FECHA SIRVE PARA: - Estudiar figuras semejantes; - Estudiar el concepto de proporcionalidad; - Introducir conceptos teóricos a través de la geometría; -Introducir

Más detalles

Cuadrados y raíces cuadradas (páginas 470 473)

Cuadrados y raíces cuadradas (páginas 470 473) A NOMRE FECHA PERÍODO Cuadrados y raíces cuadradas (páginas 470 473) Cuando calculas el producto de un número multiplicado por sí mismo, estás calculando el cuadrado de ese número. Por ejemplo, 5 5 5 2

Más detalles

FUNCIONES LINEALES Y AFINES

FUNCIONES LINEALES Y AFINES www.matesronda.net José A. Jiménez Nieto FUNCIONES LINEALES Y AFINES. LA FUNCIÓN LINEAL = m El tren AVE lleva una velocidad media de 40 km/h. La siguiente tabla nos da el espacio que recorre en función

Más detalles

Sugerencias al Profesor. RAZÓN DE CAMBIO DE UNA FUNCIÓN

Sugerencias al Profesor. RAZÓN DE CAMBIO DE UNA FUNCIÓN Sugerencias al Profesor. La siguiente es una manera que te sugerimos llevar a cabo para iniciar el desarrollo de la Unidad. Después de señalar algunos conceptos clave, se presentan unos ejemplos desde

Más detalles

Funciones y gráficas

Funciones y gráficas 86464 _ 97-4.qd //7 9: Página 97 Funciones gráficas INTRODUCCIÓN La relación entre dos magnitudes ha sido a tratada en este curso. Partiendo de los contenidos a estudiados, planteamos como objetivo principal

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA UNIDAD: ÁLGEBRA Y FUNCIONES SISTEMAS DE ECUACIONES Dos ecuaciones de primer grado, que tienen ambas las mismas dos incógnitas, constituen un sistema de ecuaciones lineales. La forma

Más detalles

Funciones y gráficas. 3º de ESO

Funciones y gráficas. 3º de ESO Funciones y gráficas 3º de ESO Funciones Una función es una correspondencia entre dos conjuntos numéricos que asocia a cada valor,, del primer conjunto un único valor, y, del segundo. La variable variable

Más detalles

Relaciones entre rectas y ángulos (páginas 256 260)

Relaciones entre rectas y ángulos (páginas 256 260) A NMRE FECHA PERÍD Relaciones entre rectas y ángulos (páginas 256 260) Las rectas paralelas son rectas en un plano que nunca se intersecan. Si la recta p es paralela a la recta q, entonces escribe p q.

Más detalles

Ángulos (páginas 506 509)

Ángulos (páginas 506 509) A NOMRE FECHA PERÍODO Ángulos (páginas 506 509) Las rectas que forman las artistas de una caja se juntan en un punto llamado vértice. Dos rectas que se juntan en un vértice forman un ángulo. Los ángulos

Más detalles

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77 MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.

Más detalles

PROYECTO DE REFUERZO ACADÉMICO PARA ESTUDIANTES DE EDUCACIÓN MEDIA PRAEM 2015

PROYECTO DE REFUERZO ACADÉMICO PARA ESTUDIANTES DE EDUCACIÓN MEDIA PRAEM 2015 MINISTERIO DE EDUCACIÓN DIRECCIÓN NACIONAL DE EDUCACIÓN Prueba de Diagnóstico de Matemática Segundo Año de Bachillerato PROYECTO DE REFUERZO ACADÉMICO PARA ESTUDIANTES DE EDUCACIÓN MEDIA PRAEM 2015 NOMBRE

Más detalles

10 Funciones polinómicas y racionales

10 Funciones polinómicas y racionales 8966 _ 009-06.qd 7/6/08 : Página 9 0 Funciones polinómicas racionales INTRDUCCIÓN Uno de los objetivos de esta unidad es que los alumnos aprendan a hallar la ecuación de una recta dados dos puntos por

Más detalles

Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas

Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas REPRESENTACIÓN DE PUNTOS EN EL PLANO RELACIÓN ENTRE DOS MAGNITUDES Ejes de coordenadas y coordenadas de puntos FUNCIÓN Tipos: - Lineal. - Afín. - Constante. - De proporcionalidad inversa. - Cuadrática.

Más detalles

FUNCIONES. Definición de función. Ejemplos.

FUNCIONES. Definición de función. Ejemplos. FUNCIONES. Definición de función. Una función es una relación entre un conjunto de salida llamado dominio y un conjunto de llegada llamado codominio, tal relación debe cumplir que cada elemento del dominio

Más detalles

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Fuente: PreUniversitario Pedro de Valdivia Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma a + b + c = 0,

Más detalles

Área de paralelogramos, triángulos y trapecios (páginas 314 318)

Área de paralelogramos, triángulos y trapecios (páginas 314 318) NOMRE FECHA PERÍODO Área de paralelogramos, triángulos y trapecios (páginas 34 38) Cualquier lado de un paralelogramo o triángulo puede usarse como base. La altitud de un paralelogramo es un segmento de

Más detalles

Gráficas de las funciones racionales

Gráficas de las funciones racionales Gráficas de las funciones racionales Ahora vamos a estudiar de una manera geométrica las ideas de comportamiento de los valores que toma la función cuando los valores de crecen mucho. Es importante que

Más detalles

3. Funciones y gráficas

3. Funciones y gráficas Componente: Procesos físicos. Funciones gráficas.1 Sistemas coordenados En la maoría de estudios es necesario efectuar medidas relacionadas con los factores que intervienen en un fenómeno. Los datos que

Más detalles

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6 ejerciciosyeamenes.com PROBLEMAS DE DERIVADAS 1. Calcula la tasa de variación media de la función +- en los intervalos: a) [- 1,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación media

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12.

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12. 7 Cálculo de derivadas. Reglas de derivación. Tabla de derivadas Aplica la teoría Deriva en función de :. y = 8. y = 5 3 5 4. y = ( ) 5 0( ) 4 9. y = 3 5 5 3 5 L 3 3. y = 7 + 3 4. y = e e 5. y = 7 7 +

Más detalles

5. Al simplificar. expresión se obtiene:

5. Al simplificar. expresión se obtiene: ARITMÉTICA. [ ( 7 ) 9 ( 7 )] es igual a : 5. El resultado de simplificar la expresión. 5 5 5 7 7, 6 + es igual a: 5 9 7 6 5 5. El valor de 75 6 5 5 ( 5 )( 65 ) log es igual a: 5 5 5. Al simplificar Mayo

Más detalles

21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes?

21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes? . Círculo recta Matemáticas II, -II. Círculo recta Por qué el círculo la recta son tan importantes? Los dos objetos geométricos más importantes aparte del punto son sin duda la recta el círculo. La recta

Más detalles

Repaso para el dominio de la materia

Repaso para el dominio de la materia LECCIÓN. Repaso para el dominio de la materia sar con las páginas 66 a 7 OJETIVO Representar gráficamente y comparar números positivos y negativos. EJEMPLO Los números enteros positivos son los números

Más detalles

MATEMÁTICA CPU Práctica 1 NÚMEROS REALES ECUACIONES E INECUACIONES REPRESENTACIONES EN LA RECTA Y EN EL PLANO

MATEMÁTICA CPU Práctica 1 NÚMEROS REALES ECUACIONES E INECUACIONES REPRESENTACIONES EN LA RECTA Y EN EL PLANO MATEMÁTICA CPU Práctica NÚMEROS REALES ECUACIONES E INECUACIONES REPRESENTACIONES EN LA RECTA Y EN EL PLANO. Marcar con una cruz los conjuntos a los cuales pertenecen los siguientes números: N Z Q R 8

Más detalles

Veamos sus vectores de posición: que es la ecuación vectorial de la recta:

Veamos sus vectores de posición: que es la ecuación vectorial de la recta: T.5: ECUACIONES DE LA RECTA 5.1 Ecuación vectorial de la recta Una recta queda determinada si se conoce un vector que lleve su dirección (de entre todos los vectores proporcionales), llamado vector director,

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA C u r s o : Matemática Material N 6 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación de la forma, o que

Más detalles

1. Línea Recta 2. 2. Rectas constantes 3 2.1. Rectas horizontales... 3 2.2. Rectas verticales... 4

1. Línea Recta 2. 2. Rectas constantes 3 2.1. Rectas horizontales... 3 2.2. Rectas verticales... 4 Líneas Rectas Contenido. Línea Recta. Rectas constantes.. Rectas horizontales.............................. Rectas verticales.............................. Rectas con ecuación y = ax.. Rectas con a > 0................................

Más detalles

El problema de la recta tangente. 96 CAPÍTULO 2 Derivación

El problema de la recta tangente. 96 CAPÍTULO 2 Derivación 96 CAPÍTULO Derivación. La derivada el problema de la recta tangente Hallar la pendiente de la recta tangente a una curva en un punto. Usar la definición de ite para calcular la derivada de una función.

Más detalles

ES.N.3.2, (+)ES.N.4.2, (+)ES.G.38.2 Enfoque de contenido Operaciones con números complejos. Destreza Sumar, restar y multiplicar números complejos

ES.N.3.2, (+)ES.N.4.2, (+)ES.G.38.2 Enfoque de contenido Operaciones con números complejos. Destreza Sumar, restar y multiplicar números complejos Semana 1 Actividades para el logro de las tareas de desempeño Día:1 Día:2 Día:3 Día:4 Día:5 ES.N.3.1, ES.N.3.2, (+)ES.G.38.1 Números complejos Que existe un número complejo i tal que i 2 =-1. Cada número

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 898 _ 09-08.qd /9/0 :0 Página 9 Funciones INTRODUCCIÓN Partiendo de la representación de los números enteros en la recta numérica, introducimos la representación de puntos en el plano mediante la asignación

Más detalles

Ecuación de la Recta

Ecuación de la Recta PreUnAB Clase # 10 Agosto 2014 Forma La ecuación de la recta tiene la forma: y = mx + n con m y n constantes reales, m 0 Elementos de la ecuación m se denomina pendiente de la recta. n se denomina intercepto

Más detalles

Hoja 5: Sucesiones y aritmética mercantil

Hoja 5: Sucesiones y aritmética mercantil Hoja 5: Sucesiones y aritmética mercantil 1 Hoja 5: Sucesiones y aritmética mercantil 1 May 2000 En una sucesión aritmética, el primer término es 5 y el cuarto término es 40. Halle el segundo término.

Más detalles

Los números enteros. > significa "mayor que". Ejemplo: 58 > 12 < significa "menor que". Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor

Los números enteros. > significa mayor que. Ejemplo: 58 > 12 < significa menor que. Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor Los números enteros Los números enteros Los números enteros son aquellos que permiten contar tanto los objetos que se tienen, como los objetos que se deben. Enteros positivos: precedidos por el signo +

Más detalles

Es cierta para x = 0. d) Sí, son soluciones. Se trata de una identidad pues es cierta para cualquier valor de x.

Es cierta para x = 0. d) Sí, son soluciones. Se trata de una identidad pues es cierta para cualquier valor de x. EJERCICIOS RESUELTOS MÍNIMOS 3º ESO TEMA 4 ECUACIONES Ejercicio nº 1.- Dada la siguiente igualdad: x 1 3 9 x 5 3x = x responde razonadamente: a) Es cierta si sustituimos la incógnita por el valor cero?

Más detalles

Lección 10: Representación gráfica de algunas expresiones algebraicas

Lección 10: Representación gráfica de algunas expresiones algebraicas LECCIÓN Lección : Representación gráfica de algunas epresiones algebraicas En la lección del curso anterior usted aprendió a representar puntos en el plano cartesiano y en la lección del mismo curso aprendió

Más detalles

CURSOS CENEVAL TOLUCA

CURSOS CENEVAL TOLUCA Precálculo Propiedades de los números reales Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría TRIGONOMETRÍA La trigonometría se inicia estudiando la relación entre los ángulos y los lados de un triángulo, surgiendo las razones trigonométricas de un ángulo y a partir de ellas las funciones trigonométricas.

Más detalles

Utiliza los números ordinales al resolver problemas planteados de manera oral.

Utiliza los números ordinales al resolver problemas planteados de manera oral. T G CONTENIDOS APRENDIZAJES ESPERADOS ESTÁNDARES 1.2.1 Identificación y uso de los números ordinales para colocar objetos o para indicar el lugar que ocupan dentro de una colección de hasta 10 elementos.

Más detalles

Capítulo 10. Ecuaciones y desigualdades

Capítulo 10. Ecuaciones y desigualdades Capítulo 10 Ecuaciones y desigualdades Desigualdades lineales simultáneas con dos variables Un conjunto de dos o más desigualdades de las formas ax+by+c> 0 o ax+by+c

Más detalles

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS FUNCIONES TRIGONOMÉTRICAS, EPONENCIALES LOGARÍTMICAS Página 9 REFLEIONA RESUELVE A vueltas con la noria Modificando la escala, representa la función: : tiempo transcurrido y: distancia al suelo correspondiente

Más detalles

Un plan para resolver problemas (páginas 6 9)

Un plan para resolver problemas (páginas 6 9) A NOMRE FECHA PERÍODO Un plan para resolver problemas (páginas 6 9) Puedes usar un plan de cuatro pasos para resolver problemas. Explora Planifica Resuelve Examina Evalúa la información dada en el problema

Más detalles

1. El sistema de los números reales

1. El sistema de los números reales 1. El sistema de los números reales Se iniciará definiendo el conjunto de números que conforman a los números reales, en la siguiente figura se muestra la forma en la que están contenidos estos conjuntos

Más detalles

Inecuaciones en dos variables

Inecuaciones en dos variables Inecuaciones en dos variables Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas unidas por uno de los cuatro signos de desigualdad,,,. Inecuaciones de primer grado

Más detalles

O -2-1 1 2 X -1- -2- de coordenadas, y representamos los números sobre cada eje, eligiendo en ambos ejes la misma unidad, como muestra la figura.

O -2-1 1 2 X -1- -2- de coordenadas, y representamos los números sobre cada eje, eligiendo en ambos ejes la misma unidad, como muestra la figura. MATEMÁTICA I Capítulo 1 GEOMETRÍA Plano coordenado Para identificar cada punto del plano con un par ordenado de números, trazamos dos rectas perpendiculares que llamaremos eje y eje y, que se cortan en

Más detalles

Funciones especiales

Funciones especiales Funciones especiales En esta sección estudiaremos algunas funciones que son muy importantes en el estudio del análisis matemático. Empezamos con algunos casos particulares de las funciones polinomiales.

Más detalles

Materia: Matemática de 5to Tema: La Hipérbola. Marco Teórico

Materia: Matemática de 5to Tema: La Hipérbola. Marco Teórico Materia: Matemática de 5to Tema: La Hipérbola Marco Teórico Las Hipérbolas son las relaciones que tienen dos asíntotas. Al graficar funciones racionales que a menudo producen una hipérbola. En este concepto,

Más detalles

1.4 SISTEMAS HOMOGÉNEOS DE ECUACIONES. 36 CAPÍTULO 1 Sistemas de ecuaciones lineales y matrices

1.4 SISTEMAS HOMOGÉNEOS DE ECUACIONES. 36 CAPÍTULO 1 Sistemas de ecuaciones lineales y matrices 36 CAPÍTULO Sistemas de ecuaciones lineales y matrices Escriba, en un comentario, la ecuación del polinomio cúbico que se ajusta a los cuatro puntos. Sea x el vector columna que contiene las coordenadas

Más detalles

Sistemas de inecuaciones de primer grado con dos incógnitas

Sistemas de inecuaciones de primer grado con dos incógnitas SISTEMAS DE INECUACIONES DE PRIMER GRADO CON DOS INCÓGNITAS 1) (Selectividad 2005) Sea el siguiente sistema de inecuaciones: 3y 6; x 2y 4; x + y 8; x 0; y 0. Dibuje la región que definen y calcule sus

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Introducción a la Melilla Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico

Más detalles

RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97.

RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97. RELACION DE PROBLEMAS DE GEOMETRIA Problemas propuestos para la prueba de acceso del curso 996/97. º. - Explica cómo se puede hallar el área de un triángulo, a partir de sus coordenadas, en el espacio

Más detalles

Herramienta de Alineación Curricular - Resumen a través de las unidades Departamento de Educación de Puerto Rico Matemáticas 2do Grado

Herramienta de Alineación Curricular - Resumen a través de las unidades Departamento de Educación de Puerto Rico Matemáticas 2do Grado 2.N.1.1 2.N.1.2 2.N.1.3 Numeración y Operación 1.0 Reconoce la relación entre los números cardinales hasta, las cantidades que estos representan y el valor posicional de sus dígitos. Cuenta, ordena, lee

Más detalles

GUÍA DE MATEMÁTICAS II

GUÍA DE MATEMÁTICAS II Este material fue enviado por usuarios para ser: almacenado, compartido mantenido en nuestro sitio web de manera gratuita. GUÍA DE MATEMÁTICAS II.- Qué postulado de orden justifica la implicación u > v,

Más detalles

V. 2 DISCUSIÓN DE UNA CURVA

V. 2 DISCUSIÓN DE UNA CURVA DISCUSIÓN DE ECUACIONES ALGEBRAICAS UNIDAD V Eisten dos problemas fundamentales en la Geometría Analítica:. Dada una ecuación hallar el lugar geométrico que representa.. Dado un lugar geométrico definido

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 11 GEOMETRÍA ANALÍTICA

INSTITUTO VALLADOLID PREPARATORIA Página 11 GEOMETRÍA ANALÍTICA INSTITUTO VALLADOLID PREPARATORIA Página 11 GEOMETRÍA ANALÍTICA Página 1 CONCEPTOS PRELIMINARES CONCEPTOS PRELIMINARES.1 GRÁFICAS Y TABULACIONES En Matemáticas, para toda operación existe su inversa, la

Más detalles

Un sistema de inecuaciones lineales con una incógnita es el conjunto formado por dos o más inecuaciones lineales de la forma:

Un sistema de inecuaciones lineales con una incógnita es el conjunto formado por dos o más inecuaciones lineales de la forma: MATEMÁTICAS BÁSICAS SISTEMAS DE DESIGUALDADES SISTEMAS DE DOS INECUACIONES Y DOS INCÓGNITAS Un sistema de inecuaciones lineales con una incógnita es el conjunto formado por dos o más inecuaciones lineales

Más detalles

Las desigualdades involucran los símbolos: < menor que, >,

Las desigualdades involucran los símbolos: < menor que, >, . Noción de intervalo en la recta real Un intervalo es un conjunto de números reales que satisfacen una desigualdad, por lo que un intervalo puede ser cerrado, abierto o semiabierto, lo podemos representar

Más detalles
Narrative | Open Document | Bunkou no Hito-tachi